

0040-4039(94)E0424-V

A New, Effective Route to Methyl Substituted 3,3a,4,6a-Tetrahydro-2*H*-cyclopenta[*b*]furan-2-ones.

Emanuela Marotta, Paolo Righi, Goffredo Rosini*

Dipartimento di Chimica Organica "A. Mangini" dell'Università Viale Risorgimento 4, 1-40136 Bologna (Italy)

Abstract: 3,3a,4,6a-Tetrahydro-2*H*-cyclopenta[*b*]furan-2-ones 1, important starting materials in the synthesis of linear condensed triquinane sesquiterpenes, have been prepared in an efficient manner by an effective bicyclization of 3-hydroxy-6-heptenoic acids, followed by a Baeyer-Villiger oxidation of the bicyclo[3.2.0]hept-3-en-6-one intermediates.

In 1986, Curran et al. reported a very efficient reaction for the opening of 3,3a,4,6a-tetrahydro-2*H*-cyclopenta[*b*]furan-2-ones with organocopper reagents ("RCu"/MgBr₂) and provided an operationally simple method to effect the S_N2'-anti opening of vinyl lactones 1a-c with good to excellent regioselectivity.

This reaction was essential in the construction of trans-3,5-disubstituted-cyclopentenes, versatile precursors for a tandem radical cyclization to produce linear condensed triquinane sesquiterpenes such as hirsutene, 2,3 Δ -capnellene, 4 hypnophilin, and coriolin. 5 The Curran procedure is very elegant and efficient and therefore serves as the key step in several other syntheses. 6,7,8

It should be noted however that the preparation of the starting vinyl lactones is a long and time consuming sequence. This paper deals with an improved approach to 3,3a,4,6a-tetrahydro-2*H*-cyclopenta[*b*]furan-2-ones 1 (Scheme 1). It consists of an efficient bicyclization of 3-hydroxy-6-heptenoic acids 2 into the corresponding bicyclo[3.2.0]hept-3-en-6-ones 3, followed by regioselective Baeyer-Villiger oxidation of them to generate the vinyl lactones.

Scheme 1

The bicyclization was performed through an intramolecular [2+2] cycloaddition of *in situ* generated unsaturated ketenes, obtained by treatment of 3-hydroxy-6-heptenoic acids 2 with potassium acetate and acetic anhydride firstly at room temperature (2 h) and then at reflux conditions (4 h).^{10,11}

The conversion of bicyclo[3.2.0]hept-3-en-6-ones 3 into the title compounds¹² was carried out with 30% hydrogen peroxide in 90% acetic acid at 0°C for 12 h. The esters of 3-hydroxy-6-heptenoic acids were prepared in good yields by a Reformatsky reaction using the procedure of Rathke and Lindert¹³ or by alkylation of the dianion of ethyl acetoacetate¹⁴ followed by chemioselective reduction with sodium borohydride in methanol. The hydrolysis of the esters was performed with a 10% methanolic solution of potassium hydroxide at room temperature.

The results obtained so far indicate this to be a general procedure, superior to the more traditional methods to prepare 3,3a,4,6a-tetrahydro-2H-cyclopenta[b]furan-2-one (1a) and its 3a-, 5- and 6a-methyl derivatives (1b-d). Further prospects for the utilization of bicyclo[3.2.0]hept-3-en-6-ones in organic synthesis are currently under consideration.

Acknowledgements. This research was supported in part by research grants from the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST), Italy; the Consiglio Nazionale delle Ricerche (CNR), Italy and the Progetto Finalizzato Chimica Fine of CNR, Italy.

REFERENCES AND NOTES

- 1. Curran, D. P.; Chen, M.-H., Leszczweski; Elliott, R. L.; Rakiewicz, D. J. Org. Chem. 1986, 51, 1612-1614.
- 2. Curran, D. P.; Rakiewicz, D. Tetrahedron, Symposium in print (B. Giese, ed) 1985, 41, 3943-3958.
- 3. Curran, D. P.; Rakiewicz, D. J. Am. Chem. Soc. 1985, 107, 1448-1449.
- 4. Curran, D. P.; Chen, M.-H. Tetrahedron Lett. 1985, 26, 4991-4994.
- 5. Fevig, T. L.; Elliott, R. L., Curran, D. P. J. Am. Chem. Soc. 1988, 110, 5064-5067.
- 6. Meyers, A. I.; Bienz, S. J. Org. Chem. 1990, 55, 791-798.
- 7. Balme, G.; Boussy, D. private communication.
- 8. Weinges, K.; Reichert, H. Synlett 1991, 785-786. Weinges, K.; Reichert, H.; Huber-Patz, U.; Irgartinger, H. Liebigs Ann. Chem. 1993, 403-411
- 9. Although the vinyl lactone 1a is readily available (Meinwald, J.; Seidel, M. C.; Cadoff, B. C. J. Am. Chem. Soc. 1958, 80, 6303), the preparation of vinyl lactones 1b^{2,3} and 1c⁴ stems on a six step synthetic sequence. The vinyl lactone 1d has been prepared by opening compound 1a with MeMgBr/CuBr·Me₂S, followed by a standard iodolactonization and a base promoted elimination with DBU.
- Confalonieri, G.; Marotta, E.; Rama, F.; Righi, P.; Rosini, G.; Serra, R.; Venturelli, F. Tetrahedron 1994, 50, 0000.
- 11. 3d: obtained as a clear oil either after kugelrohr distillation (100°C/25 mbar, 68% yield) or after flash chromatography (petroleum ether: diethyl ether = 8:2, R_f 0.5, 78% yield): IR (film): v 1779 cm⁻¹; ¹H NMR(CDCl₃): δ 5.86 (m, 1H), 5.56 (m, 1H), 3.78 (m, 1H), 3.03 (dd, 1H, J = 17.8, 3.0 Hz), 2.83 (dd, 1H, J = 17.8, 4.4 Hz), 2.61 (m, 2H), 1.38 (s, 3H) ppm; ¹³C NMR(CDCl₃): δ 208.4; 134.3, 126.3, 78.2, 59.3, 47.8, 35.2, 24.4 ppm.
- 12. 1d: obtained as an oil after flash chromatography (petroleum ether : diethyl ether = 1 : 1, R_f 0.2, 95% yield). IR (film) v 1765 cm⁻¹; ¹H NMR (CDCl₃) δ 6.05 (m, 1H), 5.85 (m, 1H), 5.05 (m, 1H), 2.30-2.65 (m, 4H), 1.35 (s, 3H) ppm; ¹³C NMR (CDCl₃) δ 177.2 (C), 137.3 (CH), 129.1 (CH), 95.51 (CH), 46.49 (CH₂), 44.34 (C), 43.27 (CH₂), 25.17 (CH₃) ppm.
- 13. Rathke, M. W.; Lindert, A. J. Org. Chem. 1970, 35, 3966-3967.
- 14. Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082-1087.